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Solutions are  cons t ruc ted  of a type of the rmal  wave descr ibing s ta t ionary and nonstat ionary 
heating p r o c e s s e s  of a medium with constant the rmal  conducting and with bulk heat absorp -  
tion. 

For  isotropie media, whose the rmal  conductivity coefficient ~ is a power of t empera tu re  T, ~ =~0 Tk, 
~t0, k =coas t  > 0, the rmal  per turbat ions  propagate f rom the heat source with constant  veloci ty [1]. If there  
is bulk heat absorpt ion in the medium, motion of the thermal  heat front, separat ing regions with VT =0 and 
VT ~ 0, can occur  only at a definite finite distance [2]. 

The spatial localization of thermal  per turbat ion and the r e s t r i c t ed  advance of the the rmal  wave front 
can be also observed in case  of media with a constant thermal  conductivity coefficient ~0 in the presence  of 
bulk heat absorpt ion in them, nthermal s inks."  We cons ider  below the heating p rocess  of an lsotropic 
medium with ~ =~0, filling the half -space z > 0 and having a constant  initial t empera tu re  T O =coas t  > 0, 
when the surface  t empera tu re  at z =0, s tar t ing at t ime t =0, va r i es  by the law T =Tw(t). 

If thermal  sinks f act in a medium with a constant  thermal  conductivity, and we assume the existence 
of a thermal  wave front z = ~ (t), the t empera tu re  distr ibution T(z, t) and 0<_ z _  < ~ (t) is determined f rom the 
solution of the problem 

OT / Ot : aO2T / Oz ~ - / (z, t, T), T (z, O) "- T o (1) 
OP T ( O , t ) - -  T~(t),  T [~ ( t ) , t ] :~  To, --~ [~(t) , t ]=O 

Here  and in what follows a = ~0c-lo -~ is the constant  the rmal  conductivity coefficient,  and c and 0 
are  the specific heat and density of the medium. In the open region D of the phase plane zt (0 < z < ~(t), 0 < 
t < 7 < ~)  it is required  to determine a function T(z, t), continuous together  with its derivative 0 T(z, t)/0 z 
everywhere  in the c losed region D,  except, perhaps,  the point (0,0). The solution of problem (1) a s sumes  a 
definite law of motion of the unknown boundary z = ~ (t), the thermal  wave front. For  ~ (t) < z <~ ,  0 < t < 
T < ~ the t empera tu re  distr ibution is T(z, t) =T 0. 

The existence of regions with different analytic express ions  for the t empera tu re  distribution, c h a r a c -  
te r i s t ic  of solutions of the thermal  wave type, is ul t imately re la ted to singular solutions of ord inary  d i f fer -  
ential equations, while at the same t ime there  is no difference between media with a constant  thermal  con-  
ductivity and media with a tempera ture-dependent  the rmal  conductivity. 

To explain the analytic nature of solutions of the the rmal  wave type, cons ider  the problem of de t e r -  
mining the s ta t ionary t empera tu re  distribution in a medium with a constant  the rma l  conductivity and thermal  
sinks of the form 

I = ~ , T " O ( T - -  To), T>~ To 
7 = const > 0 ,  n = c o n s t > - -  t, O(T--To)== l i r a (T - -  To) v'~ 

N ~ z ~  

(2) 

Moscow. Trans la ted  f rom Zhurnal Prikladnoi  Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 96-101, 
September-October ,  1973. Original ar t ic le  submitted April  18, 1973. 

�9 19 75 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

681 



with a cons tan t  t e m p e r a t u r e  va lue  T m > T 0, at  the  su r f ace  z =0.  
be obta ined f r o m  the p r o b l e m  

OT/Ot = aO2T/Oz z - -  ] (z, t, T), 

T (0, t) = r,~ (t), T Coo, t) = To, 

T l~  (t) - -O ,  tl = T  l~ (t) + O, tl ,  

T h e r m a l  waves ,  found by  solving (1), can  

T (z, 0) = To 

o r  ( ~ ,  t) = 0 

~T OT 
--~.. [g(t) --  O, tl =--~--~ [; (t) + O, tl 

(3) 

w h e r e  0 < z < ,o,  0 < t < w < oo. The ident i ty  of  solut ions  of p r o b l e m s  (1) and (3) fo r  the s a m e  t h e r m a l  s inks  
f c an  be e s t ab l i shed  if both solut ions  a r e  r e p r e s e n t e d  in in tegra l  f o r m  by m e a n s  of the sou rce  funct ion fo r  
a s emi - in f in i t e  s t r a igh t  l ine [3]. In tegra t ing  once  the s t a t i o n a r y  equat ion  {3) with boundary  condi t ions  (3) 
f o r  z -* .0, one obta ins  

dT/dz = A (T T M  - -  T'~+~) v', A ~ - -  [2T/a(i q- n)]'/, (4) 

Obviously ,  Eq. (4) is sa t i s f ied  by the  solut ion T =To, and the pa r t i a l  solut ion a r r i v i n g  at the  zT  plane 
th rough  the point  (0, Tm0) is d e s c r i b e d  in the f o r m  

T ! dr 
Az = (7~+I_ ~ I  , ,  

To ) 3" o 
is) 

For T -- T O the integral in (5) becomes improper. It converges if T O >- 0 for -1 < n < 1, or if T O > 0 
for n - 1. In these cases z ~ ~0 < =o i.e., the integral curve (5) passes the zT plane at the point (~0, To) 
on the straight line T =T 0. Consequently, the solution T =-T o is a singular solution, since uniqueness [4] is 
violated in all its points. On the zT plane the singular solution T --T o is the envelope of the set of partial 
solutions of Eq. (4). For exactly this reason the stationary solution of problem (2), (3) can be represented 
as a function, joined at the point z =~0 from the partial solution (5), which determines the temperature dis- 
tribution in the perturbed region at 0 <- z -< ~0 and the singular solution T=T0, which determines the con- 
stant temperature in the unperturbed region at ~0 -< z < =~. 

Analyzing the model problem describing nonstationary heating processes of media considered in 
[i, 2, 5] and in the present paper, it can be verified that the ordinary differential equation which should be 
integrated to solve such problems has a singular solution. The existence of a singular solution guarantees 
the possibility of joining the integral surfaces T(z, t) ~ const and T(z, t) =T o =const along the llne z = ~(t), 
describIng the law of motion of a thermal wave front. 

The connection between solutions of the thermal wave front and the existence of singular solutions of 
the corresponding ordinary differential equations can also be established for arbitrary nonstatlonary regions 
of heated media. Indeed, for sufficiently short time Intervals during which the propagation velocity of a 
thermal wave can be assumed constant, the temperature distribution close to the front is described in a 
coordinate attached to the wave front by anordinary differential equation with a singular solutlon. The slngu- 
lax solution corresponds always to a constant temperature in the unperturbed portion of the medium, while 
the temperature distribution in the perturbed region is described by the partial solution, joined to the singu- 
lar solution at the surface of the thermal wave front. 

We turn now to concrete examples of solutions of the thermal wave type describing some heating 
region of a medium with a constant thermal conductivity and bulk heat absorption. 

Let  

] = h ~- TI exp (a [z -- ~ it)I) 0 ( T -- To) 

a, T0---- const~0, 71 =const~0 (6) 

If the wall (z =0) temperature increases monotonically according to the expression 

7z [ a~exp(v2t/a)*vexp(-c~vt) --il,V=COIISt>0 (7) 

the t emperature  dis tr ibut ion in the medium can be de termined  by so lv ing  the prob lem (1), (6), (7). A s  a 
resu l t  one obtains  
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{ Tlla~'exp[--v(z--vQ/ql-{-vexp[u(z--vt)] ] To+-~ ~'T~ - i for 

T (z, t) = To for 

(t) = vt 
(t) < z < ~ (8) 

T h e r e  ex i s t s ,  thus ,  in the  m e d i u m  a t h e r m a l  wave  f ron t  z =~ (t), moving  with  cons t an t  ve loc i t y  f r o m  
the s u r f a c e  z =0.  

We note  tha t  the  p r o b l e m  (1), (6) has  a s t a t i o n a r y  so lu t ion  ff the  s u r f a c e  z =0 is  sub jec t  to  a cons t an t  
t e m p e r a t u r e  Tw(t )  =Tin0 =cons t ,  Tm0 > T 0. In th i s  c a s e  the t e m p e r a t u r e  d i s t r i b u t i o n  in the  m e d i u m  is  d e -  
t e r m i n e d  by the  e x p r e s s i o n s  

r (z) = ! To + "r, ~ ' ~ [ e x p [ a ( Z - - ~ o ) l - - a (  z - ~ o ) -  1] for 0 ~ z - < ~ o .  (9) 

(, To for ~0~z <: oo 

whi le  the loca t ion  of the  i m m o b i l e  t h e r m a l  wave  f ron t  z = ~0, i .e . ,  the bounda ry  of the  w a r m e d  l a y e r  of  the  
m e d i u m  f lowing to  the  hea t ed  s u r f a c e ,  should be found by so lv ing  the  t r a n s c e n d e n t a l  equa t ion  

exp ( - -  a~o) -}- a ~  = i + (aa'/yx) (Tree - -  To) (lO) 

We d e t e r m i n e  the  t e m p e r a t u r e  d i s t r i b u t i o n  f o r  an o sc i l l a t i ng  r e g i o n  of the s u r f a c e  (z =O) t e m p e r a t u r e  

T,~ (t) = Tree + Tmze ~t, r,,o, r . , , ,  o = const  > 0, (11) 

T~0-- To~ Tml 

For simplicity we assume that in the expression of thermal sinks (9) ~ -- 0, so that the solution of 
the problem without initial conditions (I), (6), (11) is reasonably represented in the form 

i 
~c 

Tree + 7'.,ach Qaz exp (~a)t) + ~-,z2 ---Ud-'a + A.z ~- ~ At sh Q~z exp (ilo~t) 
r (z, t) = ,=0 

fo~ O ~ z ~ ( t )  
To for g (t) ~ z < o0 (12) 

co 

~(t) = ~ ~i exp (lie)t), 
i = 0  

~-)-t = (t + i)Vol/2a, Ao, A~,..., ~o, ~-, , . . .-  const 

The  funct ion  T(z ,  t) of (12) s a t i s f i e s  the  d i f f e r en t i a l  equa t ion  and bounda ry  cond i t ions  (1) a t  the  s u r -  
f ace  z =0 with Tw(t) d e t e r m i n e d  a c c o r d i n g  to (11). F r o m  the e x p r e s s i o n s  fo r  T(z ,  t) and ~ (t) (12) and the  
bounda ry  cond i t ions  (1) a t  the t h e r m a l  wave  f ron t  z =~ (t) one can  find the  c o n s t a n t s  A0, A1, . . . ,  ~0, ~1. �9 �9 

V 2a aTn, l~Q1 
S0 = ~(T~.o-- To), ~,---- T, she,~o ' 

A 2 - ~  2T1  sh2~l~o s h  f~2~o " " " 

(13) 

We note  tha t  the e x p r e s s i o n  ~0 (13) d e t e r m i n e s  the s t a t i o n a r y  loca t ion  of the t h e r m a l  wave  f ron t  in 
the m e d i u m  if the  s u r f a c e  z =0 i s  sub jec t  to a cons t an t  t e m p e r a t u r e  Tm0 > T o >0.  

We a s s u m e  now tha t  t h e r m a l  s inks  of  the  f o r m  

)f = / 2  ---~ ill u t-'l" 0 (T), ~ = const ~ 0 

ac t  in the  m e d i u m .  

ff the  s u r f a c e  (z =0) t e m p e r a t u r e  v a r i e s  by the  law 

(14) 

T~ (0 = u [exp (~0V2) - -  t] ~ t ,  ~0 = const ~ 0 (15) 
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and the initial  medium t e m p e r a t u r e  is T O =0, the t e m p e r a t u r e  dis t r ibut ion in the medium can  be de te rmined  
by solving the model  p rob lem (1), (14), (15). As a r e su l t  we obtain 

O for O < z ~ . ~ ( t )  (16) 
fo, ; ( t ) ~ < z (  ~ 

(t) = ~o V ~ t t ,  r = z l g ~ - &  

where  ~(~) and ~ (~0) a r e  e r r o r  in tegra ls .  

Consider  t h e r m a l  sinks of the f o r m  

] = is  ~ 7:T0 (T - -  To), 7s, To = eonst > 0 (17) 

We note that  it is poss ib le ,  in pr inciple ,  to cons ide r  the m o r e  genera l  action law of t h e r m a l  sinks 
fa ,  contained in the f i r s t  pa r t  of Eq. (17) in the exponential  fac tor  exp ( ~ [ z - ~  (t)]). The co r respond ing  r e -  
suits ,  however ,  a r e  not given here  due to the awkwardness  of  the final re la t ions .  

If the su r face  (z =0) teml~erature osc i l l a tes  ha rmonica l ly  by (11), the t e m p e r a t u r e  dis t r ibut ion in the 
medium can be de te rmined  by solving the p rob lem without initial  conditions (1), (11), (17). Cor responding  
calcula t ions  lead to 

c o  

T,.0 ch ~oz q- Tmx ch '~v exp io)t -t- ~ At sh Qtz exp il(ot 
T (z, t) = ~=o 

for O~<z<~(t)  

; (t) = ~ ;5 exp Lj(ot 
i=0 

f~t= ~,._..~'l',',, ~o=..~.~rcn._.T~o ' ~ l =  J 'o~'sha~,  
T'zm Ql~  eth Q2~o 

~ = - ~ z r ' O , a o ,  ~ ,  a~;o . . . .  A o  : - -  " t / r ~ o  - -  t o "  

~lfll| 
Ax = - -  Tr.x eth f~l~0, A~ -- 2ToD~g sh ~ o  sh, t21~o " " " 

(zs) 

(19) 

The exp re s s ion  of ~0 (19) de t e rmines  the s ta t ionary  locat ion of the t h e r m a l  wave f ront  In the medium 
if the sur face  z =0 is subject  to a constant  t e m p e r a t u r e  Tin0 > T O > 0. 

If the su r face  (z =0) t e m p e r a t u r e  v a r i e s  according  to 

Tw (t) = To ~ t  (eh 5 v t  - -  ~8  - t  sh 6 v t ) ,  v = corot > 0 

= v/2a, 8 = Vv ' / 4a  2 -t- 7s/a'  , 
(20) 

T (z,  t) = 

(t) = ot 

the t e m p e r a t u r e  dis t r ibut ion in the medium, obtained by solving the model p rob l em (1), (17), (20), has  the 
following form:  

for O ~ z ~ ( t )  (21) 
To for ; ( t ) ~ < z <  ~ 

i .e. ,  the t h e r m a l  wave front  z = ~ (t) moves  in the medium with cons tant  ve loc i ty  v. We as sume  that t h e r m a l  
sinks of  the fo rm 

J = h-~-'f4 T~0(T), ~,~,---  const, l ~ l < t ,  ~4~>0 (22) 

act  in the medium with T O = 0. 

When the su r face  (z = 0) t e m p e r a t u r e  is Tw(t) = Tin0 = const  > 0, the following t e m p e r a t u r e  d i s t r ibu-  
tion [2] occu r s  in the medium: 
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T(z) 

t0 = 12a (t + ~)/7,T~ (t - -  ~)'l'/, (23) 

If the su r f ace  (z =0) t ~ n p e r a t u r e  in the initial  m o m e n t o f t i m e t  = 0 v a r i e s  discont inuously f rom T o =0 
to T w (t) =Tm0 =eonst ,  taking into account  the s t a t ionary  solution (23), an approx ima te  expres s ion  of the 
t e m p e r a t u r e  dis t r ibut ion can  be sought in f o r m  

r (z, t) = T~o [t - -  z l~  (t)l~!c~-~ . (24) 

Since 
~T 

r [ ~ ( t ) , t ]  -----yT[~(t),t I = 0  , 

by in tegra t ing  the d i f ferent ia l  equation (1) ove r  z f r o m  0 to ~ (t) one obtains an in tegra l  equation of t h e r m a l  

balance  

d 
-g-f ,) T (z,  t ) d z  = - -  a .-~z 

o o 

Substituting (24) in (25), one can  obtain an approx imate  law of motion of the t h e r m a l  wave f ront  z = 
(t), sa t isfying the condition g (0) =0 

where  ~ 0 is de te rmined  by (23). Within the s ame  approx imat ion  one can  e s t ima te  the re laxa t ion  t ime  to the 
s ta t ionary  region (23) 

1-~ r~ ~ T,,0 (i § ~)/4~q (i -- ~) (27) 

The examples given indicate, indeed, that spatially localized thermal waves whose front propagates 
with finite velocity from the source of thermal perturbations can be formed in media with bulk heat absorp- 
tion. The necessity of studying the solution of the thermal conductivity equation with a term describing 
sinks f arises, in particular, in considering the process of heat propagation in a thin rod of layer, accom- 
panied by beat transfer to surrounding space. We also note that the solutions mentioned can be success- 
fully applied to other transport processes, such as gas diffusion in simple media wis high absorption. 
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